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An approximate solution is given for the equations of  motion and energy in the main part of a turbulent 
vortex jet  of incompressible fluid in a space full of the same fluid. 

If a turbulent vortex je t  discharges at a sufficiently large Re number, its radial  veloci ty  component will  be very 
small  in comparison with the axia l  and tangent ia l  components. The jet  may then be considered as a motion possessing 
the properties of a boundary layer,  so that the Navier-Stokes and energy equations describing the total  variat ion of the 
parameters of  the jet  can be simplif ied.  

In cyl indr ical  coordinates, the boundary layer equations of turbulent motion of a viscous and thermal ly  conduct-  
ing fluid in a vortex jet  (all derivatives with respect to the angle 0 are zero due to the axia l  symmetry of  the jet) with 
Pr = I wil l  have the form 
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In accordance with boundary layer theory [1], we neglect  the influence of molecular  viscosity and omi t  the nor- 
mal  components of the turbulent stress tensor. We also bear in mind that  the axia l  derivatives are smal l  in comparison 
with the radial .  

Using the method of successive approximations to solve (1), we can obtain formulas for u, v, w, and p in the 
main  part of a turbulent jet  of incompressible fluid discharging into a space full of the same fluid [2]. The m a t h e m a t i -  
cal operations are very tedious, however, and difficult  to apply to the invest igat ion of h igh- tempera ture  and high-speed 
turbulent vortex jets. Transforming the second equation of (1) by making the substitution M = wr reduces the differen- 
t i a l  equations of  motion and energy of  the boundary layer of  the jet  to forms that  can be analyzed without expanding the 

components of the averaged veloci ty ,  temperature,  and pressure. 

Consider a turbulent vortex je t  of  incompressible fluid. From the hypothesis that  the turbulent transfer coeff icient  
is constant over the cross section of the jet ,  the tangent ia l  components of the turbulent stress tensor may  be written in 

the form 

% r = P s - - ,  %0 = 9 s - -  �9 (2) 
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Now the equations of (1) will  be analogous to those for a laminar  vortex jet  of  incompressible fluid with the dyna-  
mic  viscosity g replaced by e. Then the solution of the first equation of  (1), neglect ing the influence of pressure on the 

axia l  veloci ty  component,  will  have the form [2, 3]" 
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Substituting M = wr in the second equation of (1), we have 
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We shall seek a solution in the form 

M = a (~)/x. 

Integrating (4) and taking into account (3) and (5), we obtain 
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The constant of integration in this equation is zero, since a(~) = 0 when ~ = 0. 

Substituting the value of F(~) into (6), after integration we have the following expression for M: 

M = c l~Vx( I  + 0.125~2) 2. (7) 

If we assume that the solution for p has the form p = b ( ~ ) / x  4, then, integrating the third equation of (1), for the 
pressure profile in the jet we have 

P/P,= = (1 + 0.125 P) -8. (s) 

Expressions (7) and (8) are analogous to the formulas for w and p obtained in investigating a turbulent vortex jet 
by the method of successive approximations~ 

To determine the dimensionless excess temperature in the main part of  the turbulent vortex jet we have the rela- 
tion [3]: 

a T / A  T m = W ~ f u  m (9) 

If we consider a vortex jet of  finite thickness, the hypothesis that the turbulent transfer is constant does not give 
the desired result, especially at the boundaries of the jet. 

An axial velocity component distribution that agrees well with experimental data [3] over the whole width of  the 
jet is obtained by putting 
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In this case integration of the Second equation of (1) gives 
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A numerical integration of the function 
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for an axial velocity component distribfition determined by the Tollmien solution [3] is given in Fig. 1. 

The solution of  the first equation (I) for u may be expressed with sufficient accuracy b y t h e  equation 
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Fig. 1. Moment fields of tangential velocity 
components in the main part of  a turbulent vor- 
tex jet o f  incompressible fluid ( c j x  = 0.392 ' 
�9 c2/x = 0.1075 cs/x = 1): 1 - according to (13), 

2 -  (11),  3 - (7) 

(12) 

In this case the solution of the second equation of system (1) is given by the formula 
3 ? 
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X, 
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where c 3, as well  as c 1 and c~, is determined from the condition that  L0 is constant in the jet .  However, since the 
axial  veloci ty  component distributions in (3), (12) and in the Tol lmien  solution are described by different formulas, the 
numericalvalue of c 3 will not be equal to cland c 2. Comparing 

c I, c 2 a n d c  3 f o r r / r  c =  l a n d  M =  0.5, whe re r  c i s t h e o r d i -  
nate of  the point at which the ax ia l  veloci ty  component is 
hal f  Um, we obtain c 1 = 0.392c z = 0.1075c s. 

It can be seen from Fig. 1 that  (7) and (11) give the 
distribution M = ffr/rc)  a t  the axis of  the je t  with approxi-  
ma te ly  the same accuracy as for the axia l  veloci ty  compo-  
nent profiles, but diverge at  the jet  boundaries. The curve 
of the moment  of the tangent ia l  veloci ty ,  expressed by (13), 
gives approximate ly  the average of  (7) and (11). 

In a turbulent je t  of finite thickness, the pressure dis-  
tribution may  be represented by 
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Figure 2 shows the pressure over  the je t  cross section 
as a fraction of the value at  the axis, as determined from 
(8) and (14). As with u and M, the curves diverge only at 
the je t  boundary. Since the thermal  and dynamic  boundary 
layers do not in teract  in a flow of  incompressible fluid, the 
distribution of dimensionless excess temperature  in a vortex 
je t  of  finite thickness may also be described with the aid of  
(9), by substituting values of  u determined from (12) or 
Tol lmien ' s  solution. 
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Fig. 2. Pressure profiles in the main  part of a tur-  
bulent  vortex jet:  1 - according to the formula 

P/Pro = (1 - ~3/2 g = 0.441 r / rc;  2 - P/Pm = 
= [1 / (1  + 0.12592)] 3, g = 1.81 r / r  c 

NOTATION 

u, v and w - axial, radial, and tangential components of mean velocity of jet; T, T a - temperature of fluid in 

jet and in surrounding medium; ZX T = (T -- Ta) - excess temperature of fluid in jet; A - mechanical equivalent of 

heat; Cp - heat capacity of fluid; p - pressure of fluid in jet; p - density of fluid; q - heat flux; rxr, rx0 - tangential 

components of turbulent stress tensor; s - coefficient of turbulent transfer; u m - axial velocity component at axis of 

jet; g = r/ox, ~ = r/~x, ~ = r/~x - relative coordinates; o - an experimental constant; F(g) = 0.5 g/(l + 0.125g ~) - 

function of g in the Hertler solution [3]; a(g) and b(g) - unknown functions of g; c~ - a constant, determined from the 
~o 

condition that the moment of momentum in the jet is constant, i.e., for L0 = ~ uMrdr ---- const; A Tin=Tin-- Ta - ex- 
0 

cess temperature of fluid at axis of jet; l T - Taylor mixing length; ~ - experimental constant, in general different 

from o and x. 

REFERENCES 

1. H. 

2. L. 

3. G. 

Schlichting, Boundary Layer Theory [Russian translation], IL, 1956. 

G. Loitsyanskii, PMM, 1, 1953. 
N. Abramovich,  Theory of  Turbulent Jets [in Russian], F izmatgiz ,  1960. 

27 February 1964 Bauman Higher Technica l  College, 
Moscow 

226 


